

Richard Partridge, Brown University for the DØ collaboration

- Physics goals for Run 2b
- DØ Run 2b upgrade strategy
- Run 2b upgrade activities and plans

Fermilab PAC Meeting April 14, 2000

Run 2b Physics Goals

- Our goal is to achieve a "hat trick" of major discoveries!
 - » Top quark (done)
 - » SUSY or other physics beyond the SM (2a? 2b?)
 - » Higgs boson (2b?)
- ...but we already have a fall-back plan
 - » Precision measurements of m_W , $m_t \Rightarrow m_H$ (indirect)
 - » CP violation in B decays
 - » Detailed study of top quark properties
 - » Many new particle searches
 - » QCD studies at high and low Q²
 - » etc. etc.
- ◆ Full range of DØ physics topics see significant benefits by "Factor of 10" increase in integrated luminosity in Run 2b

Higgs Hunting in Run 2b

Present SM Higgs Mass limits (95% CL):

 $M_H > 107.7 \text{ GeV (direct)}$ $M_H < 188 \text{ GeV (indirect)}$

- ♦ With ~20 fb⁻¹, CDF+DØ have good sensitivity for SM Higgs:
 - 5+ s.d. discovery for $m_H < 125$ GeV
 - \rightarrow 3+ s.d. discovery for $m_H < 180 \text{ GeV}$
 - Exclude SM at 95% CL if there is no sign of the Higgs in Run 2b
- Higgs hunting is critically dependent on maximizing the integrated luminosity in Run 2b

One Possible Scenario

2001-2003 2 fb⁻¹ (Run 2a) 2003 Run 2b upgrade 2004-2007 15 fb⁻¹ (Run 2b)

- Narrow window of opportunity for Run 2b upgrades
- No more than one major shutdown
- Need high luminosity (~5 x 10³² cm⁻¹s⁻¹) starting in ~2004 to meet Run 2b goals

Run 2b Upgrade Strategy

- Primary goal is to maintain capabilities of Run 2a detector
- Focus is on fixing problems brought on by accumulated radiation dose and/or high instantaneous luminosity

Need to perform "4C" fit:

- ◆ Radiation damage, high occupancy ⇒ need to modify or replace some detector elements
- ◆ Limited window of opportunity ⇒ minimize downtime and schedule risk
- ◆ Limited resources ⇒ minimize scope of Run 2b upgrade
- ◆ Challenging physics goals ⇒ exploit opportunities to improve sensitivity to key physics processes

DØ Run 2b Activities

- ◆ Early DØ studies identified opportunities and potential problems in high luminosity running
 - » Snowmass 96
 - "DØ Detector at TeV33"
- ◆ DØ revived discussion of future silicon detector options in Fall 99
- ◆ Regina Demina and Richard Partridge appointed to chair "Beyond 2 fb⁻¹" working group in January
- ◆ Beyond 2 fb⁻¹ mini-workshop held in early March to review effects of radiation, occupancy on Run 2a detector
- ◆ Amid furious effort to complete Run 2a upgrade, serious investigation of Run 2b upgrade options has begun

Major Problems

Radiation damage to silicon vertex detector

- Radiation increases effective doping concentration,
 requiring increased bias voltage to deplete silicon sensor
 - » Depletion voltage will exceed breakdown voltage after ~4 fb⁻¹ for innermost layer (Layer 1)
 - » Layer 2 expected to survive ~10 fb⁻¹
 - » Layers 3, 4 are probably OK up to ~20 fb⁻¹

Trigger rates

- Higher instantaenous luminosity requires increased rejection to maintain acceptable trigger rates
- Increased minbias pileup decreases trigger rejection
- Radiation damage in inner fiber layers may require loosening the track trigger requirement

Silicon Options

- Need to replace layers 1, 2
 - » May use "sandwich" of axial and stereo single-sided detectors rather than double-sided detectors
 - » Split silicon design may allow replacement without rolling out
- Strong physics motivation for additional layer(s)
 - » Sandwich design increases multiple scattering, degrades b-tagging
- Several options presently under consideration:
 - » 25 μ pitch layer 0
 - » Inner pixel layer
 - » Replace inner fiber layers with outer silicon layers 5 and 6
- Can probably avoid development of new SVX readout chip
 - » ~2,700 untested SVX2 readout chips "banked" at UTMC
 - » Expect additional ~1000 SVX2 chips to be left after Run 2a upgrade
- ◆ Silicon R&D is critical and must begin soon

Trigger Upgrade

- Focus on meeting trigger requirements through incremental upgrades to various trigger systems
- Trigger upgrades generally don't require major shutdown
- Possible trigger upgrades include:
 - » Improved Level 1 jet trigger
 - » Improved Level 1 φ-matching between calorimeter and tracker/preshower
 - » Level 2 processor upgrades
 - » Level 2 STT upgrade
 - » Level 3 processor upgrade
 - » Data path upgrade to allow higher Level 2, Level 3 trigger rates
- Need to develop an integrated and coherent trigger upgrade plan to achieve a balanced trigger with a sensible division of trigger bandwidth

Potential problems

SIFT chip operation

- ◆ SIFT chip contains discriminators that tell the fiber tracking trigger whether a fiber has been hit or not
- Noise problems may preclude 132 ns operation with the current design
- New design required?

Central muon PDT aging and occupancy

- Central muon B/C layer PDT's require periodic "zapping" to remove wire crud
 - » Estimate zapping may be required every ~1 fb⁻¹
- Occupancies expected to be several % in central PDT's
 - » Is this a problem?

Unplanned Upgrades and Fixes

- Expect variety of small upgrades and detector fixes to be introduced during Run 2 to address specific problems
- Many examples of such upgrades in Run 1
 - » cosmic shield counters
 - » Level 1 trigger changes
 - » Processor farm upgrades
 - » tracker alignment fibers
 - » luminosity monitor scintillator changes
 - » etc.
- Such upgrades are likely to be limited in scope and funding, but require flexibility

Run 2b Upgrade Plan

- ◆ The "beyond 2 fb-1" mini-workshop was extremely helpful in reviewing what we presently know about high luminosity running
- Next step is to flesh out the most promising upgrade options, begin MC design studies, and develop a plan for R&D funding in FY2001
- Plan to utilize June DØ workshop to develop consensus on most urgent R&D needs

Conclusions

- Compelling physics case for Run 2b with maximum possible integrated luminosity
- ◆ DØ has begun planning for Run 2b upgrade
- Silicon and trigger upgrades are likely to be necessary
- SIFT chip and muon central PDT aging/occupancy are areas for concern
- Additional mini-upgrades are likely
- Next step is to identify most promising options and develop R&D plan